Topological study of multiple coexisting attractors in a nonlinear system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42385102
(http://iopscience.iop.org/1751-8121/42/38/385102)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.155
The article was downloaded on 03/06/2010 at 08:09

Please note that terms and conditions apply.

Topological study of multiple coexisting attractors in a nonlinear system

Anirban Ray ${ }^{1}$, Dibakar Ghosh ${ }^{1,2}$ and A Roy Chowdhury ${ }^{1}$
${ }^{1}$ High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta-700032, India
${ }^{2}$ Department of Mathematics, Dinabandhu Andrews College Garia, Calcutta-700 084, India
E-mail: anirban.chaos@gmail.com, drghosh-chaos@yahoo.com and asesh-r@yahoo.com

Received 18 November 2008, in final form 5 August 2009 Published 7 September 2009
Online at stacks.iop.org/JPhysA/42/385102

Abstract

Multiple attractors in a new nonlinear dynamical system recently derived from the derivative nonlinear Schrodinger (DNLS) equation describing the Alfven turbulence in magnetized plasma are analyzed in the light of geometric characterization of orbit properties, which was originally introduced by Birman and Williams and later systematized by Gilmore, Mindlin, Letellier and others. We observe that the order in which periodic orbits appear is as predicted from their symbolic sequences by the universal sequence. The observed templates of increasing complexity are organized along a spiral (which is actually a twodimensional homomorphic projection of the original attractor). Examples of explicit templates and their variation with respect to the parameter are exhibited.

PACS numbers: 05.45.Pq, 05.45.Ac, 05.45.-a.

1. Introduction

Recently various research workers have shown a keen interest in both local and global aspects of chaos exhibited in nonlinear systems [1, 2, 3]. The global properties are best described by the topological analysis introduced by Birman, Williams, Gilmore and others. One such example is that of the Newton-Leipnik system [4]. Here in this paper, we have found a new nonlinear system from the Galerkin approximation of the derivative nonlinear Schrodinger (DNLS) equation describing Alfvin turbulence in magnetized plasma. The chaotic properties of such a system are not studied in detail. Here, our motivation is to study these attractors from a topological point of view.

In the last decade, another method concerning the analysis of the chaotic system was developed which heavily depended on Birman-William's proposed template [5]. It depends on finding the unstable periodic orbits (UPOs) embedded in the attractor and calculating the interaction between UPOs. From this information one can project the flow into a twodimensional flow keeping all the dynamics intact. Although at the present state it can only be
used for systems embedded in three dimensions, when it is used it can yield beautiful aspects of a chaotic attractor [5-8]. This method has already been used on the Lorenz system [8], the Rössler system [9], and the Duffing system [10]. It is also used on a chaotic data set like Belousov-Zhabotinskii [11, 12] and a modulated laser system [13-16] where a relation between attractors at different forcing frequency were obtained.

Here in this communication we have considered a reduction of the usual DNLS equation via Galerkin-type approximation, to analyze the chaotic aspects of resulting ordinary differential equations (ODEs). As it usually happens, a nonlinear set of ODEs are studied with respect to the fixed-point stability, attractor and Lyapunov spectra which actually give glimpses of the local nature of chaos [17]. In order to have a better understanding of the nature of unstable periodic orbits, and their configuration inside the attractor and super-stable state, one must have an idea about how the chaotic behavior is manifested globally. So we use topological analysis on this dynamical system.

We organized the paper as follows. First we deduce the system. Then we extracted an unstable periodic orbit from the system at different parameter values. Finally, we calculated the topological invariants like the linking number and local torsion of the corresponding unstable periodic orbits at a particular parameter value. From this information we have calculated the two-dimensional projection of the hyperbolic flow corresponding to our system.

2. Formulation

The analysis of stable and unstable structures in plasma is very important from the view point of both theory and experiment. The chief motivation being the understanding of the mechanism of transition from order to chaos or vice versa. These are equally important both in laboratory and space plasma. One of the most important and difficult problems is the occurrence of turbulence in magnetized plasma, which can be attributed to the existence of an infinite number of frequencies in a particular process. Recently people have been trying to analyze the process of turbulence in the light of the strange attractor of chaotic systems. Some important work has already been done in several situations of magnetized and unmagnatized plasma. Recently the same type of investigation has been done even in quantum plasma.

The basic nonlinear equation governing the propagation of oblique Alfven waves in a magnetized plasma can be derived following the reductive perturbative procedure of Mio et al [18] by starting with continuity, momentum, Maxwell equations along with polytropic equation state. The equation so obtained can be written in terms of normalized variables as

$$
\begin{equation*}
\left(\mathrm{i} \frac{\partial}{\partial t}-\hat{\gamma}\right) B+\mathrm{i} \alpha \frac{\partial}{\partial x}\left(B|B|^{2}\right)+\beta \frac{\partial^{2} B}{\partial x^{2}}=0, \tag{1}
\end{equation*}
$$

where B stands for the normalized magnetic field, $\hat{\gamma}$ is the growth or damping factor, and β, is the sign of nonlinearity and dispersion respectively. A system of three coupled ordinary differential equations are derived by substituting the following expansion for the complex field $B(x, t)$:

$$
\begin{equation*}
B(x, t)=\sum_{\sigma=0}^{2} B_{\sigma}(t) \exp \left\{-\mathrm{i}\left(k_{\sigma} x-\omega_{\sigma} t\right)\right\} \tag{2}
\end{equation*}
$$

From the linear dispersion, we have $\omega_{\sigma}=-\beta k_{\sigma}^{2}(\sigma=0,1,2)$ and $\omega_{2,3}-\omega_{0}=\Delta_{1,2}$ are the phase differences. The resonance condition $2 k_{0}=k_{1}+k_{2}$ is assumed. It may be mentioned that along with equation (1) we also set the Fourier transform of $\hat{\gamma} B(x, t)$ as $\gamma(k) B_{k}(t)$. Substituting these in equation (1) and taking k_{0}, k_{1}, k_{2} components, we arrive at three nonlinear complex ODEs written as
$\frac{\mathrm{d} B_{0}}{\mathrm{~d} t}=\gamma_{0} B_{0}+\mathrm{i} \alpha k_{0}\left\{B_{0}\left|B_{0}\right|^{2}+2 B_{0}\left|B_{1}\right|^{2}+2 B_{0}\left|B_{2}\right|^{2}+2 B_{1} B_{2} \overline{B_{0}} \exp (2 \mathrm{i} \Delta t)\right\}$
$\frac{\mathrm{d} B_{1}}{\mathrm{~d} t}=\gamma_{1} B_{1}+\mathrm{i} \alpha k_{1}\left\{2 B_{1}\left|B_{0}\right|^{2}+B_{1}\left|B_{1}\right|^{2}+2 B_{1}\left|B_{2}\right|^{2}+B_{0} \overline{B_{2}} \exp (-2 \mathrm{i} \Delta t)\right\}$
$\frac{\mathrm{d} B_{2}}{\mathrm{~d} t}=\gamma_{2} B_{2}+\mathrm{i} \alpha k_{2}\left\{2 B_{2}\left|B_{0}\right|^{2}+2 B_{1}\left|B_{1}\right|^{2}+B_{2}\left|B_{2}\right|^{2}+2 B_{0} \overline{B_{1}} \exp (-2 \mathrm{i} \Delta t)\right\}$
where $\Delta=\frac{\Delta_{1}+\Delta_{2}}{2}$
These are a set of nonlinear ODEs obtained from the original DNLS equation by taking recourse to the Galerkin approximation, the truncation to three terms. In the absence of turbulence, a reasonable physical model is obtained by three-wave truncation of the DNLS equation.

After neglecting the other components of equation (3) because of their low amplitudes the amplitude-phase variables

$$
\begin{equation*}
B_{\sigma}(t)=R_{\sigma}(t) \exp \left(\mathrm{i} \theta_{\sigma}(t)\right) \tag{4}
\end{equation*}
$$

$\sigma=0,1,2$ with R_{σ} and θ_{σ} being real, are introduced in equation (3). Also we introduce

$$
\begin{equation*}
\psi(t)=2 \theta_{0}-\theta_{1}-\theta_{2}-2 \Delta t . \tag{5}
\end{equation*}
$$

Hence, we get the four real equations:

$$
\begin{align*}
\frac{\mathrm{d} R_{0}}{\mathrm{~d} t} & =\gamma_{0} R_{0}+2 \alpha k_{0} R_{0} R_{1} R_{2} \sin \psi \tag{6a}\\
\frac{\mathrm{~d} R_{1}}{\mathrm{~d} t} & =\gamma_{1} R_{1}-\alpha k_{1} R_{0} R_{2} \sin \psi \tag{6b}\\
\frac{\mathrm{~d} R_{2}}{\mathrm{~d} t} & =\gamma_{2} R_{2}-\alpha k_{2} R_{0} R_{1} \sin \psi \tag{6c}\\
\frac{\mathrm{~d} \psi}{\mathrm{~d} t}= & -2 \Delta+\alpha\left[k_{1} R_{1}^{2}+k_{2} R_{2}^{2}-R_{0}\left(k_{1}+k_{2}\right)\right] \\
& +4 \alpha k_{0} R_{1} R_{2}-R_{0}^{2}\left[\left(R_{2}\right) /\left(R_{1}\right)+\left(R_{1}\right) /\left(R_{2}\right) k_{2}\right] \cos \psi \tag{6d}
\end{align*}
$$

Here the four-dimensional system has two symmetries under $\left(R_{0}, R_{1}, R_{2}, \psi\right) \rightarrow\left(-R_{0}, R_{1}\right.$, $\left.R_{2}, \psi\right)$ and $\left(R_{0}, R_{1}, R_{2}, \psi\right) \rightarrow\left(R_{0},-R_{1},-R_{2}, \psi\right)$. This four-dimensional system can be reduced to three equations if we assume that $\gamma_{1} \approx \gamma_{2}$ and $k_{\sigma}=0,1,2$ are of the same order of magnitude. Using these relations, equations (6b) and (6c) are multiplied with R_{1} and R_{2} respectively. Then subtracting one from the other, it is found that the time asymptotic state of $R_{1}-R_{2}$ is zero. So we can set $R_{1}=R_{2}$ without the loss of generality. In addition if we use $\gamma_{1} \approx \gamma_{2}, k_{0} \approx k_{1} \approx k_{2}$ and utilize $\alpha=\beta=-1$ and use the following new variables:
$T=\gamma_{0} t, \quad a_{0}^{2}=\frac{k_{0}}{\gamma_{0}} R_{0}^{2}, \quad a_{1}^{2}=\frac{k_{0}}{\gamma_{0}} R_{1}^{2}, \quad \theta=-\psi, \quad \delta=-\frac{\Delta}{\gamma_{0}}, \quad \gamma=-\frac{\gamma_{1}}{\gamma_{0}}$,
we get the final form

$$
\begin{align*}
& \dot{a}_{0}=a_{0}+2 a_{0} a_{1}^{2} \sin \psi \tag{8a}\\
& \dot{a}_{1}=-\gamma a_{1}-a_{0}^{2} a_{1} \sin \psi \tag{8b}\\
& \dot{\psi}=-2 \delta+2\left(a_{1}^{2}-a_{0}^{2}\right)+2\left(2 a_{1}^{2}-a_{0}^{2}\right) \cos \psi . \tag{8c}
\end{align*}
$$

Figure 1. For parameter values $\delta=-6.02$ and $\gamma=6.74$, attractor A_{1} with the initial condition $(5.556,0.929,3.765)$, attractor A_{2} with the initial condition $(-5.556,0.929,3.765)$, attractor A_{3} with the initial condition $(-5.556,-0.929,3.765)$ and attractor A_{4} with the initial condition (5.556, -0.929, 3.765).
(This figure is in colour only in the electronic version)
This is the final form which we analyze from the point of view of local and global stability. Here equations (8) are invariant under a symmetry group of four operations $\left(a_{0}, a_{1}, \psi\right) \rightarrow\left(\pm a_{0}, \pm a_{1}, \psi\right)$, i.e. equation (8) has twofold reflection symmetry. As an effect of twofold reflection symmetry we get four distinct basins of attraction and four disjoined attractors as shown in figure 1 (attractors $A_{1}, A_{2}, A_{3}, A_{4}$) [19]. Moreover, there would be no possibility of attractor margin crisis and stretching-folding (or scrolling) will play the main role in creation of the attractors instead of tearing and squeezing mechanisms (which play the main role in Lorenz-like attractors). As these four attractors are basically the same, we will discuss the attractor A_{1} and extend the results to other attractors through symmetry.

3. Bifurcation of attractor \boldsymbol{A}_{1}

It may be mentioned that the topological approach is based on organizing the unstable periodic orbits whose linking properties severely constrain the structure of the strange attractor (figure 1 which shows the four coexisting attractors at the same parameter value).

Figure 2. (a) The bifurcation diagram of A_{1} for $\delta \in[-6.09,-5.88]$ and $\gamma=6.74$. (b) The bifurcation diagram of A_{2} for $\delta \in[-6.09,-5.88]$ and $\gamma=6.74$.

A quantitative topological characterization of low-dimensional chaotic sets requires a good symbolic encoding of the trajectories which is given by first return map. We have built the FRM (first return map) at $a_{1}=1.0$ and $3 \leqslant a_{0} \leqslant 6$. A mask of the attractor which may be viewed as the knot holder of the reduced plasma system is built after many visual investigations in the tri-dimensional state space. This mask is related to the stretched and folded band on which asymptotic trajectories evolve in the state space. Such an approach can be used whenever the vector field is strongly dissipative and if the Lyapunov dimension is less than 3. This method was first introduced by Birman and Williams on the Lorenz system [5]. Once the knot holder is extracted the topology is synthesized onto a template, which is described by the linking matrix $M_{i j}$, in which i and j run from 0 to maximum symbolic name n (for example 0 to 1 in our case).

In the last few decades several research workers have studied the characteristics of a unimodal map under the variation of the control parameter. Such a map is the actual output of the FRM. The associated symbolic dynamics of the resultant unimodal map is useful to describe the creation of periodic orbits. The method applied here are thoroughly described in [9, 20].

The initial step is an organization of the periodic orbits. Firstly one has to discard orbits which are multiples of small periodic orbits (that is, multiple encoding of the same orbit) so that one is then left with only pure or prime orbits, which can be labeled according to their order. Order is actually the integral number of periods of the simplest limit cycles or the number of distinct maxima in a_{0}. Our main aim is to obtain a global representation of various regimes that are encountered as the parameters (γ, δ) are varied. This can be done with the help of bifurcation diagrams which are tools commonly used in nonlinear dynamics. Such diagrams display the characteristic property of the asymptotic solution of the dynamical system as a function of the control parameter. In the case of the above system given by equation (8), derived from the plasma equation, we plot the bifurcation diagram of two coexisting attractors (A_{1} and A_{2}) with respect to the variation of parameter δ for fixed values of γ (figure 2). One

Figure 3. For $\delta=-6.004$ and $\gamma=6.74$, (a) period 3 of A_{1}, (b) period 3 of A_{2}.
point is distinct from the bifurcation diagram that two attractors have clearly different basins of attraction. But the symmetrical nature is still evident from it. In bifurcation of A_{1}, values of a_{0} are bounded between 4.0 and 7.0 (figure $2(a)$). But in the case of A_{2}, values of a_{0} are bounded between -7.0 and -4.0 (figure $2(b)$). Here we have shown that the statement made in section 2 about the symmetry of the attractor is true. As all four of them are basically the same attractors, we have not shown the bifurcation diagram of the other two attractors. Here δ is varied in the range $\delta=-6.09$ to $\delta=-5.88$ (as shown in figure 2). It is evident from the diagram that distinguishes different periodic windows (i.e. the point from where new periodic orbits arise in the attractor) is a very difficult task. It is easy for low periodic orbits like periods $1,2,4,3,5$, etc. But for higher periods these become impossible. This is where the symbolic orbit can be used. As discussed in [9, 20], each monotonic branch of the first return map (FRM) is labeled by a symbol. For the present we limit our bifurcation diagram in the range $\delta=-6.09$ to $\delta=-5.88$, where the bounded solution appears.

In attractor A_{1}, after $\delta=-5.8970$ period 1 orbit generates period 2 through period doubling. Then at $\delta=-5.9464$ through another period doubling we get period 4 in A_{1}. Then after $\delta=-5.9572$ we get period 8 . These are the initial stages of period doubling cascade.

However, the structure of bifurcation is very complex. For example, the period 3 window of A_{1} at $\delta=-5.9887$ and the period 5 window at $\delta=-5.9770$ are very prominent (an example of period 3 for both attractors is given in figure 3). But there are a very large number of finely interlaced windows between periodic and chaotic regimes. To analyze the bifurcation in detail we consider the symbolic dynamics. In order to introduce and take advantage of the parity of a branch in FRM, we use arithmetic symbols. The orientation-preserving branch is labeled by an even number and the orientation-reversing branch is denoted by an odd number. As an example we take the period 3 orbit in A_{1}; its respective interactions with the FRM are $a_{0_{1}}=5.59949493, a_{0_{2}}=4.82179451$ and $a_{0_{3}}=5.22176552$. Now in our case we take the

Figure 4. FRM of attractor A_{1} at $\gamma=6.74$ and (a) $\delta=-6.015$, (b) $\delta=-6.1$ and $(c) \delta=-6.2$.
branch on the left of $a_{0_{c}}=5.1273$ as $\mathbf{0}$ and branch on the right as $\mathbf{1}$ (figure $4(a)$). Thus, a symbol can be assigned to the orbit as $\overline{\mathbf{1 0 1}}$. Here the ordering rule employed is the same as that of [9, 20].

Now that we have defined one-dimensional symbolic dynamics we can further go into the study of the bifurcation diagrams and later to its template characterization.

We confined our study to the region $\delta \in[-6.02,-5.88]$ when $\gamma=6.74$. In this region of δ and γ the strange attractor evolves from a fixed point to limit cycle then to strange attractor. The variation of the corresponding FRM of attractor A_{1} is shown in figure 4. Here the thinness of the FRM denotes that the corresponding flow is very dissipative. So the ordering of orbit creation in the Logistic map gives essentially all the bifurcation sequences when the symbolic dynamics is binary (i.e. two symbols ' 0 ' and ' 1 ' are needed to encode the UPOs). As most periodic orbits of the dissipative system appear as predicted by a universal sequence [9, 22], we will test this in the present system. As the FRM and its variation with parameter are very similar to the Rössler system, we expect its bifurcation sequence to be very similar with that of the Rössler attractor [9]. Hence, creation of UPO in this reduced plasma system occurs according to the ordering of symbolic dynamics up to the lower order periods. They appear in the bifurcation diagram according to the ascending order within the symbolic sequence of the same length for low periodic orbits. As an example the period 7 orbits that have appeared

Table 1. Number of UPO of the lowest periods of attractor A_{1} at $\delta=-6.015$ and coordinates of the outermost point of a periodic orbit are given. The fifth column sho of the periodic orbits, sixth column shows the relative order of appearance and s represented symbolic encoding of the corresponding periodic orbits.						
Period	a_{0}	a_{1}	ψ	Torsion	Order	Symbol
1	5.35784006	0.90566772	3.79163098	1	1	1
2	5.52581787	0.92883861	3.76922488	1	2	10
3	4.82184076	0.86778438	3.87184000	2	16	101
3	4.74438000	0.85305530	3.88579297	1	17	100
4	5.55612183	0.92912751	3.76558900	3	3	1011
5	5.33211899	0.90471011	3.79501891	4	11	10111
5	5.28182602	0.90459877	3.80162907	3	12	10110
6	5.00466204	0.86378717	3.84356308	4	5	101110
6	5.40862083	0.91646308	3.78444505	5	6	101111
6	5.04444695	0.88694757	3.83600998	3	18	100101
7	5.56886387	0.93031621	3.76400900	6	9	1011111
7	5.01386023	0.88245243	3.84085989	5	10	1011110
7	5.50676680	0.91857523	3.77219892	4	24	1011010
7	4.83844900	0.86565173	3.86930609	5	25	1011011
7	5.15206194	0.89630342	3.81989908	4	27	1001011
7	5.54040384	0.91994607	3.76806498	3	28	1001010
8	4.91207218	0.86920971	3.85734892	5	4	10111010
8	5.34031487	0.90300423	3.79407001	6	7	10111110
8	5.41839504	0.91788578	3.78312397	6	14	10110111
8	5.58482599	0.92403960	3.76254296	5	15	10110110
8	4.86058807	0.87014699	3.86541295	4	21	10010110
8	5.57750607	0.92826343	3.76313090	5	22	10010111
9	4.88915920	0.87247318	3.86070490	7	8	101111110
9	4.97521400	0.88088077	3.84678292	6	13	101111010
9	5.50525522	0.91674191	3.77250409	6	19	101101110
9	5.22648096	0.89601803	3.80964804	7	20	101101111
9	4.80531502	0.86337757	3.87487006	4	23	100101100
9	5.47455788	0.90119177	3.77725101	5	26	100101110

in the bifurcation diagram are in the order $(\overline{1011111}$ and $\overline{1011110})$. Now if we arrange them according to the ordering rule of symbolic dynamics, then they will appear in the order ($\overline{1011111}$ and $\overline{1011110}$). Both orders are the same.

The order of appearance for the period 8 orbit is stated below. The first period 8 orbit that appears in the bifurcation diagram is $\overline{10111010}$ through period doubling; then we get $\overline{10111110}$ and $\overline{10111111}$ through saddle-node bifurcation at $\delta=5.9674$. Later, $\overline{10111111}$ orbit gets pruned. Hence, it never appears at $\delta=-5.995$. The next candidates to occur are $\overline{10110111}$ and $\overline{10110110}$ through saddle-node bifurcation. So all the period 8 orbits of different symbolic flavors occur in the bifurcation diagram according to the ascending order of symbolic sequence. This sequence is also in symbolic order. In table 1, we have enlisted the parameter values of δ for a fixed value of $\gamma=6.74$, after which particularly they appear. We have tested the ordering rule up to period 11 and found it to be true. This can be checked from 28 orbits up to period 9 given in tables 1 and 2.

Table 2. Occurrence of the periodic orbits of A_{1} with the change of parameter $\delta \in[-6.015,-5.09]$ and $\gamma=6.74$. Here we have used the convention P_{j} where P means period and j means the relative occurrence (this is a partial occurrence, i.e. after period 4_{1} the period 4_{2} occurs).

Period	Symbolic representation	Parameter (δ) value
2_{1}	10	-5.8970
4_{1}	1011	-5.9464
8_{1}	10111010	-5.9572
6_{1}	101110	-5.9657
6_{1}	101111	-5.9657
8_{2}	110111110	-5.9674
8_{2}	10111111	-5.9674
9_{1}	101111110	-5.9695
9_{1}	101111111	-5.9695
7_{1}	1011111	-5.9728
7_{1}	1011110	-5.9728
5_{1}	10111	-5.9770
5_{1}	10110	-5.9770
9_{2}	101111010	-5.9812
9_{2}	101111011	-5.9812
8_{3}	10110111	-5.9843
8_{3}	10110110	-5.9843
3_{1}	101	-5.9887
3_{1}	100	-5.9887
6_{2}	100101	-5.9918
9_{3}	101101110	-5.9942
9_{3}	101101111	-5.9942
8_{4}	10010110	-5.9961
8_{4}	10010111	-5.9961
9_{4}	100101100	-5.9973
7_{2}	1011010	-5.9988
7_{2}	1011011	-5.9988
9_{5}	100101110	-6.0011
7_{3}	1001011	-6.0032
7_{3}	1001010	

The forcing rule is a powerful tool to find the occurrence of the periodic orbits in the bifurcation diagram which we have stated in table 1. The details of the rule are described in $[3,9]$. It is more useful than the ordering rule. These are the relative and partial orders for the three-dimensional flow.

For each UPO, table 1 gives the coordinate of the outermost periodic points in the FRM. Three high-precession coordinates are given in this table. It may further be added that we observe the lack of the period 1 orbit of label (0). This UPO coincides with the inner fixed point. It is the first one to be created but does not lie within the attractor. The ' 00 ' symbol was absent in the symbolic sequence before the appearance of period 3 at $\delta=-5.9887$ [22]. So we can say that the attractor undergoes a change which changes its size. This is called the internal crisis. For details one could consult [23]. We did not calculate the 1D entropy
which is not relevant to these 3D flows with 2D Poincaré sections. For many orbits, 1D and 2 D entropy are not the same [24].

Growing further into the parameter region $\delta \in[-6.2-6.02]$ (and $\gamma=6.74$) reveals a progressive increase in the complexity of the FRM (figure 4) with the simultaneous enrichment of UPO's population. The FRMs reveal new critical points, and symbolic dynamics progressively incorporate new letters (as described by the encoding condition). Here in figure $4(c)$, we have shown the FRM in $\delta=-6.2$. Here two new branches occur at the FRM. This signifies that we need five-letter symbolic dynamics to encode the motion. That is, more UPOs arise inside the attractor.

It is beyond the scope of the present paper to present exhaustive results of this evaluation of the A_{1} attractor. Only some typical results for the A_{1} attractor are shown in table 3 .

The creation of the new UPOs as the parameter ' δ ' increases is a result of the growth of the attractor on the outside of the folded band. According to this the creation of periodic orbits is governed by the outermost periodic points of UPOs. Here it should be noted that to the extent to which we have searched, UPO population concerning two letter words are completed before the completion of that of three letter words $(0,1,2)$. This rule is carried up to four-letter symbolic orbits that we have studied for the A_{1} attractor. From these we conjecture that i-letter symbolic dynamics is completed before the completion of $(i+1)$-letter symbolic dynamics for the A_{1} attractor. This is in compliance with the rules developed in [9].

4. Computation of topological invariants:

Once the UPOs are extracted from the attractor at a particular parameter value, one can go on to calculate the topological invariants $[13,15]$ like
(i) self-linking number and local torsion of each periodic orbit and
(ii) the linking number of the pairs of orbit.

The linking number of the two periodic orbits A and B represents how many times A winds around B. Obviously, $l k(A, B)=l k(B, A)$. If $\mathbf{X}_{\mathbf{A}}(\mathbf{t})$ and $\mathbf{X}_{\mathbf{B}}(\mathbf{t})$ denote the trajectories in phase space and $P_{A} T$ and $P_{B} T$ are their periods, then the linking number of A and B is the Gauss integral:

$$
\begin{equation*}
\operatorname{lk}(A, B)=\frac{1}{4 \pi} \int_{0}^{P_{A} T} \int_{0}^{P_{B} T} \frac{\left(\mathbf{X}_{\mathbf{B}}-\mathbf{X}_{\mathbf{A}}\right) \cdot\left(\mathbf{d} \mathbf{X}_{\mathbf{A}} \wedge \mathbf{d} \mathbf{X}_{\mathbf{B}}\right)}{\left\|\mathbf{X}_{\mathbf{B}}-\mathbf{X}_{\mathbf{A}}\right\|^{\mathbf{3}}} \tag{9}
\end{equation*}
$$

But it is difficult to calculate the above Gaussian integral. To our relief, this linking number can be written as

$$
\begin{equation*}
l k(A, B)=\frac{1}{2} \sum_{i} \sigma_{i} \tag{10}
\end{equation*}
$$

where σ_{i} represents the i th signed crossing between A and B. Thus, one can calculate the linking number between two orbits A and B by counting the number of signed crossings. Here σ_{i} is +1 or -1 depending on whether it is over cross or under cross. This is graphically shown in figure 5 . While calculating the self-linking number for a periodic orbit A, which represents the linking of a periodic orbit with itself, we have to modify relation (10) as

$$
\begin{equation*}
\operatorname{Slk}(A)=\sum_{i} \sigma_{i} \tag{11}
\end{equation*}
$$

But this self-linking number is not a topological constant in R^{3} space. This is constant in $R^{2} \times S$ space .

Table 3. The intersection of the UPO of the lowest periodic orbits of attractor A_{1} at $\delta=-6.1$ and $\gamma=6.74$ with the FRM and the corresponding symbolic sequence are shown.

Period	Symbol	a_{0}-coordinate	a_{1}-coordinate	ψ-coordinate
1	1	5.454482	0.9248986	3.783154
2	10	5.644196	0.9191234	3.760762
3	100	4.641326	0.8486545	3.909968
4	1011	5.664752	0.9037088	3.759351
4	1001	4.581622	0.8431033	3.921254
4	1000	4.650711	0.8444239	3.908612
4	2000	6.670358	1.009217	3.656593
4	2001	4.547978	0.8409672	3.927683
5	10001	4.443043	0.8338637	3.948476
5	10010	4.902309	0.8693106	3.864486
5	10011	5.778376	0.9398175	3.744351
5	10111	4.846958	0.8648170	3.873684
5	10110	4.831361	0.8644527	3.876252
5	10000	4.386683	0.8283781	3.960253
5	20000	4.407683	0.8217251	3.956534
5	20001	4.552217	0.8401238	3.926954
6	101111	5.472320	0.9110307	3.781852
6	100101	4.915598	0.8673168	3.862532
6	100111	5.446669	0.9008806	3.785705
6	100011	4.458118	0.8346265	3.945438
6	100001	4.575913	0.8429812	3.922318
6	100000	4.315804	0.8208312	3.975614
6	200000	6.484839	0.9884309	3.673109
6	200001	4.554817	0.8434123	3.926211
6	200110	5.423745	0.9124944	3.787833
6	200101	4.744567	0.8545670	3.891476
7	1001111	5.780340	0.9380071	3.744248
7	1000100	4.481336	0.8363423	3.940770
7	1000101	5.352275	0.9099650	3.797155
7	1000111	4.595721	0.8478810	3.918288
7	1000011	4.860255	0.8691685	3.871213
7	1000001	4.440215	0.8338025	3.949044
7	1000000	4.390615	0.8294357	3.959364
7	2000000	4.404212	0.8282123	3.956701
7	2000001	5.239857	0.9017264	3.812658
7	2000100	4.716829	0.8604318	3.895791
7	2001110	5.423796	0.8965642	3.788862
8	10001111	5.445158	0.9132339	3.785089
8	10001100	5.753363	0.9440594	3.746840
8	10000100	4.379840	0.8288973	3.961607
8	10000101	4.916883	0.8664995	3.862389
8	10000110	4.974823	0.8723711	3.852982
8	10000011	5.964556	0.9548642	3.723696
8	10000001	4.241657	0.8150489	3.992134

Table 3. (Continued.)

Period	Symbol	a_{0}-coordinate	a_{1}-coordinate	ψ-coordinate
8	10000000	4.222870	0.8154141	3.996271
8	20000000	5.061439	0.8832855	3.839200
8	20000001	6.385991	0.9821149	3.682044
8	20000010	5.579458	0.9260530	3.767908
8	20001101	4.825859	0.8640332	3.877196
8	20001001	4.760636	0.8588461	3.888428

Figure 5. Example of the calculation of the self-linking number of period $3(\overline{100})$ and linking number between the previous orbit and period $1(\overline{1})$ orbit. Black dots show positive crossing and blank dots show negative crossing.

We have calculated the linking number and self-linking number of 28 orbits extracted from the dynamical system at ($\gamma=6.54$ and $\delta=-6.015$) and they are shown in table 4. The diagonal of the table gives the self-linking number of the corresponding orbits, and offdiagonal elements give the linking number between respective orbits. An example of the calculation is shown in figure 5. In figure 5(a), we have three black dots and one blank dot. These dots represent the crossing points of period $3(\overline{100})$. The black dots are the positive crossings and the blank dots are the negative crossing. Thus, the total positive crossing number is 2 . Thus, the self-linking number of the corresponding periodic orbit is 2 (from relation (11)). In figure $5(b)$, we have shown the linking between above the period 3 orbit and the period 1 orbit $(\overline{1})$. The total positive crossing number between one $(\overline{1})$ and three $(\overline{100})$ orbit

Table 4. The linking number and self-linking number of UPO of the lowest period (of A_{1} at $\delta=-6.015$ and $\gamma=6.74$) are given. UPOs are ordered in the same order as that of table 1. Here we have used the same convention P_{j} as described in table 2.

Period	1_{1}	2_{1}	3_{1}	3_{1}	4_{1}	5_{1}	5_{1}	6_{1}	6_{1}	6_{2}	7_{1}	7_{1}	7_{2}	7_{2}	7_{3}	7_{3}
1_{1}	0	1	1	1	2	2	2	2	3	3	3	3	3	3	3	3
2_{1}	1	1	2	2	3	4	4	4	5	5	6	6	5	5	5	5
3_{1}	1	2	2	3	4	5	5	6	6	6	7	7	7	7	7	7
3_{1}	1	2	3	2	4	5	5	5	6	6	7	7	7	7	6	6
4_{1}	2	3	4	4	5	8	8	8	10	10	12	12	11	11	10	10
5_{1}	2	4	5	5	8	8	10	10	12	12	14	14	14	14	13	13
5_{1}	2	4	5	5	8	10	8	10	12	12	14	14	13	13	12	12
6_{1}	2	4	6	5	8	10	10	9	12	12	14	14	14	14	13	13
6_{1}	3	5	6	6	10	12	12	12	13	15	18	18	16	16	15	15
6_{2}	3	5	6	6	10	12	12	12	15	13	18	18	17	17	16	16
7_{1}	3	6	7	7	12	14	14	14	18	18	18	21	20	20	19	19
7_{1}	3	6	7	7	12	14	14	14	18	18	21	18	19	19	18	18
7_{2}	3	5	7	7	11	14	13	14	16	17	20	19	16	18	17	17
7_{2}	3	5	7	7	11	14	13	14	16	17	20	19	18	16	17	17
7_{3}	3	5	7	6	10	13	12	13	15	16	19	18	17	17	14	16
7_{3}	3	5	7	6	10	13	12	13	15	16	19	18	17	17	16	14

is 2 . Hence, the linking number is 1 (from equation (10)). At last, we come to the part of calculating the local torsion. Local torsion measures which way the trajectories infinitely close to a periodic orbit wind around. As one follows the UPO over one period $P_{A} T$, the directions of the local stable $\left(W_{l}^{s}(A)\right)$ and unstable $\left(W_{l}^{u}(A)\right)$ manifold rotate by an integer number of half turns. This number is defined to be local torsion.

In numerical simulation local torsion $\left(\Theta_{l}\right)$ can be computed by using linearization of the equation of motion around the periodic orbit. Given a set of ODEs

$$
\begin{equation*}
\frac{\mathrm{d} X}{\mathrm{~d} t}=f(X, t) \tag{12}
\end{equation*}
$$

The linearized equation govern the time evaluation of the infinitesimal perturbation δX of trajectory X :

$$
\begin{equation*}
\frac{\mathrm{d}(\delta X(t))}{\mathrm{d} t}=J(X, t) \delta X(t) \tag{13}
\end{equation*}
$$

where the Jacobian matrix is given by

$$
\begin{equation*}
J_{i j}(X, t)=\frac{\partial f_{i}(X, t)}{\partial X_{j}} \tag{14}
\end{equation*}
$$

Given a periodic orbit $X_{A}(t)$ of periodic $P_{A} T$, and its Floquet matrix $M_{A}(t)$, one can always have a linear relation between $X\left(t+P_{A} T\right)$ and $X(t)$,

$$
\begin{equation*}
\delta X\left(t+P_{A} T\right)=M_{A}(t) \times \delta X(t) \tag{15}
\end{equation*}
$$

can be computed by integrating equation (13) over one period of the orbit for a basis of the initial condition.

The eigenvector $\xi_{s}(t)\left(\xi_{u}(t)\right)$ with the eigenvalue smaller (greater) than 1 indicates the direction of the local stable (unstable) manifold. Integrating equation (13) with the initial
condition $\left(\delta X(0)=\xi_{u}(0)\right)$, the local torsion is then given by the formula similar to equation (9):

$$
\Theta_{l}(A)=\frac{1}{\pi} \int_{0}^{P_{A} T} n \cdot\left(\frac{\delta X \wedge \delta \dot{X}}{\|\delta X\|^{2}}\right) \mathrm{d} t
$$

In our case, the local torsion of the extracted orbits is given in fifth column of table 1.

5. The template characterization

Birman and Williams have proved a remarkable theorem, which greatly facilitates the diagnosis of the dynamics of the system, which exhibits chaos and has a hyperbolic invariant set. It states that one can project all periodic orbits onto an unstable invariant manifold in the direction of stable foliation without incurring crossing. In simple terms, topological organization of periodic orbits is not changed by projection.

The attractor is the result of the stretching and folding of branches contained in the attractor. To find the topological signature we need to find the linking numbers and selflinking numbers of the UPOs among each other. The linking numbers are found by equation (10). The whole topological information about the attractor is embedded in its template. This template can be drawn from the linking number and torsion of the orbit. The template remains invariant under a small change of the parameter. But the basis set of UPOs changes.

We describe in brief the basic features of the template representation as described in [3, 7] as follows.
(i) The FRM gives the position of the attractor into N ribbon subsets and each one is labeled by the corresponding letter of the symbolic dynamics.
(ii) Each ribbon subset is carefully drawn to identify all half twist and crossings.
(iii) The template is obtained by connecting the ribbons together according to the standard insertion rules.
(iv) The $N \times N$ matrix is obtained from the knowledge of twist and crossing. Here N is the total number of distinct symbols.
(v) Each branch of an expansive template contains a period 1 orbit. The diagonal elements $T(i, i)$ of the template matrix are the local torsion of the period 1 orbit, and the off-diagonal elements $T(i, j)=T(j, i)(i \neq j)$ are twice the winding number of the period 1 orbits i and j.
(vi) Finally the linking number of any two UPOs can be deduced from their symbolic dynamics.

Now in our case for the given symbolic name and its (self) linking number from tables 2 and 4 , elements of the template matrix for the attractor A_{1} at $\gamma=6.74$ and $\delta=-6.015$ are given by

$$
\begin{aligned}
& \operatorname{slk}(01)=t_{01}+l_{01}=1 \\
& l k(1,01)=\frac{1}{2} t_{01}+\frac{1}{2} t_{11}+\frac{\pi\left(t_{11}\right)}{2} l_{01}=1 \\
& l k(1,0111)=\frac{1}{2} t_{01}+\frac{3}{2} t_{11}+\frac{\pi\left(t_{11}\right)}{2} l_{01}=2 \\
& l k(01,0111)=2 t_{01}+\frac{1}{2} t_{00}+\frac{3}{2} t_{11}+\frac{1}{2}\left[\pi\left(t_{00}+t_{11}\right)\right] \times l_{01}=3 \\
& \operatorname{Slk}(0111)=3 t_{01}+3 t_{11}+\left(3-\pi\left(t_{11}\right)\right) \times l_{01}=5,
\end{aligned}
$$

Figure 6. The two-dimensional figure of the template of A_{1} represented by the template matrix and the array matrix. Two-branch template of A_{1} at $\delta=-6.015$ and $\gamma=6.74$. Here the arrow denotes the direction of the flow.
where $\pi(n)=0$ or 1 if n is even or odd. From these equations we have the solution

$$
t_{01}=0, \quad t_{00}=0, \quad t_{11}=1 \quad \text { and } \quad l_{00}=0 \quad l_{01}=1
$$

Hence, the template can be written as

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
0 & 1
\end{array}\right) .
\end{aligned}
$$

Two-dimensional projection representing the above matrix is shown in figure 6. This figure shows the distinct two-branch template (one is ' 0 ' and another is ' 1 '). As a test one can find the linking number from the template, and find that they match those in table 4.

As we progress further into the parameter region a new template arises, i.e. new branches occur. At $\delta=-6.1$ and $\gamma=6.74$, a new branch with even parity occurs in the FRM of attractor A_{1}, as was described extensively in the previous section (figure $4(b)$). Similarly a new branch with local torsion 2 occurs (i.e. it is twisted two times before coming back to FRM). Former two branches ' 0 ' and ' 1 ' keep their topology intact. Hence, the template matrix becomes a 3×3 matrix. The template matrix can be written as

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 2
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 2 & 1
\end{array}\right) .
\end{aligned}
$$

As we travel further into the parameter region more and more branches with even and odd parity occur in the FRM. Thus, new branches will be incorporated into the template of the
A_{1} attractor. From the very beginning, we have said that A_{1}, A_{2}, A_{3} and A_{4} are not different. They are just the image of one another. From this we can conjecture that a template containing all other attractors would be either the same template, that explains the flow of A_{1}, or the mirror image of the template defined above.

6. Conclusion and discussion

In our above analysis we have studied in detail the mechanisms which are responsible for the formation of the chaotic attractor for a new chaotic dynamical system. The important aspect of the system, which is worth pointing out, is that there are four disjoined coexisting attractors arising out of the two two-fold symmetry of the governing equation. As proposed in [19], these four attractors have distinct basins of attraction and disjoined attractors which is proved with the help of figures 1 and 2. As these attractors are basically the same, we calculated the template structure of the attractor A_{1} at different parameter values. All the UPOs and symbolic dynamics corresponding to each different case can be explicitly constructed. We have also seen that the periodic orbit appear as predicted by universal sequence. This study might help us to understand the behavior of these coexisting attractors.

Acknowledgments

The authors are very thankful to the suggestion of referees, who have made it possible to arrange the paper in the present form. Moreover, the authors want to thank Professor C Letellier for setting the guidelines for preparing the paper.

References

[1] Guckenhimer J and Holmes P 1983 Nonlinear Oscillation, Dynamical System and Bifurcation of Vector Field (Berlin: Springer)
[2] Ghrist R W, Holmes P and Sullivan M 1997 Knots and Links in Three-Dimensional Flows (Berlin: Springer)
[3] Gilmore R and Lefranc M 2001 The Topology of Chaos (New York: Wiley)
[4] Lofaro T 1997 Int. J. Bifurcation Chaos Appl. Sci. Eng. 72723
[5] Birman J S and Williams R F 1983 Topology 2247
[6] Solari H G and Gilmore R 1988 Phys. Rev. A 373096
[7] Mindlin G B, Hou X-J, Solari H G, Gilmore R and Natiello M A 1990 Phys. Rev. E 555082
[8] Letellier C, Dutertre P and Gouesbet G 1994 Phys. Rev. E 493492
[9] Letellier C, Dutertre P and Maheu B 1995 Chaos 5271
[10] Gilmore R and McCallum J W L 1995 Phys. Rev. E 51939
[11] Mindlin G B, Solari H G, Natiello M A, Gilmore R and Hou X-J 1991 J. Nonlinear Sci. 1147
[12] Mindlin G B and Gilmore R 1992 Physica D 58229
[13] Lefranc M and Glorieux P 1993 Int. J. Bifurcation Chaos Appl. Sci. Eng. 3643
[14] Boulant G, Lefranc M, Bielawski S and Derozier D 1997 Phys. Rev. E 555082
[15] Boulant G, Lefranc M, Bielawski S and Derozier D 1998 Int. J. Bifurcation Chaos Appl. Sci. Eng. 8965
[16] Boulant G, Lefranc M, Bielawski S and Derozier D 1997 Phys. Rev. E 55 R3801
[17] Ray A, Ghosh D and Chowdhury A Roy 2008 Phys. Lett. A 3725329
[18] Mio N et al 1976 J. Phys. Soc. Japan 411093
[19] Letellier C and Gilmore R 2001 Phys. Rev. E 63016206
[20] Hao B-L 1989 Elementary Symbolic Dynamics and Chaos in Dissipative System (Singapore: World Scientific)
[21] Sarkovskii A N 1964 Ukr. Mat. Z. 1661
[22] Lefranc M et al 1994 Phys. Rev. Lett. 731364
[23] Grebogi C and Ott E 1983 Physica D 7181
[24] Mindlin G B, López-Ruiz R, Solari H G and Gilmore R 1993 Phys. Rev. E 484297

