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Abstract
Multiple attractors in a new nonlinear dynamical system recently derived
from the derivative nonlinear Schrodinger (DNLS) equation describing the
Alfven turbulence in magnetized plasma are analyzed in the light of geometric
characterization of orbit properties, which was originally introduced by Birman
and Williams and later systematized by Gilmore, Mindlin, Letellier and others.
We observe that the order in which periodic orbits appear is as predicted from
their symbolic sequences by the universal sequence. The observed templates
of increasing complexity are organized along a spiral (which is actually a two-
dimensional homomorphic projection of the original attractor). Examples of
explicit templates and their variation with respect to the parameter are exhibited.

PACS numbers: 05.45.Pq, 05.45.Ac, 05.45.−a.

1. Introduction

Recently various research workers have shown a keen interest in both local and global aspects
of chaos exhibited in nonlinear systems [1, 2, 3]. The global properties are best described
by the topological analysis introduced by Birman, Williams, Gilmore and others. One such
example is that of the Newton–Leipnik system [4]. Here in this paper, we have found a new
nonlinear system from the Galerkin approximation of the derivative nonlinear Schrodinger
(DNLS) equation describing Alfvin turbulence in magnetized plasma. The chaotic properties
of such a system are not studied in detail. Here, our motivation is to study these attractors
from a topological point of view.

In the last decade, another method concerning the analysis of the chaotic system was
developed which heavily depended on Birman–William’s proposed template [5]. It depends
on finding the unstable periodic orbits (UPOs) embedded in the attractor and calculating
the interaction between UPOs. From this information one can project the flow into a two-
dimensional flow keeping all the dynamics intact. Although at the present state it can only be
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used for systems embedded in three dimensions, when it is used it can yield beautiful aspects
of a chaotic attractor [5–8]. This method has already been used on the Lorenz system [8],
the Rössler system [9], and the Duffing system [10]. It is also used on a chaotic data set
like Belousov–Zhabotinskii [11, 12] and a modulated laser system [13–16] where a relation
between attractors at different forcing frequency were obtained.

Here in this communication we have considered a reduction of the usual DNLS
equation via Galerkin-type approximation, to analyze the chaotic aspects of resulting ordinary
differential equations (ODEs). As it usually happens, a nonlinear set of ODEs are studied with
respect to the fixed-point stability, attractor and Lyapunov spectra which actually give glimpses
of the local nature of chaos [17]. In order to have a better understanding of the nature of unstable
periodic orbits, and their configuration inside the attractor and super-stable state, one must
have an idea about how the chaotic behavior is manifested globally. So we use topological
analysis on this dynamical system.

We organized the paper as follows. First we deduce the system. Then we extracted an
unstable periodic orbit from the system at different parameter values. Finally, we calculated the
topological invariants like the linking number and local torsion of the corresponding unstable
periodic orbits at a particular parameter value. From this information we have calculated the
two-dimensional projection of the hyperbolic flow corresponding to our system.

2. Formulation

The analysis of stable and unstable structures in plasma is very important from the view
point of both theory and experiment. The chief motivation being the understanding of the
mechanism of transition from order to chaos or vice versa. These are equally important both
in laboratory and space plasma. One of the most important and difficult problems is the
occurrence of turbulence in magnetized plasma, which can be attributed to the existence of
an infinite number of frequencies in a particular process. Recently people have been trying to
analyze the process of turbulence in the light of the strange attractor of chaotic systems. Some
important work has already been done in several situations of magnetized and unmagnatized
plasma. Recently the same type of investigation has been done even in quantum plasma.

The basic nonlinear equation governing the propagation of oblique Alfven waves in a
magnetized plasma can be derived following the reductive perturbative procedure of Mio
et al [18] by starting with continuity, momentum, Maxwell equations along with polytropic
equation state. The equation so obtained can be written in terms of normalized variables as(

i
∂

∂t
− γ̂

)
B + iα

∂

∂x
(B|B|2) + β

∂2B

∂x2
= 0, (1)

where B stands for the normalized magnetic field, γ̂ is the growth or damping factor, and β,
is the sign of nonlinearity and dispersion respectively. A system of three coupled ordinary
differential equations are derived by substituting the following expansion for the complex field
B(x, t):

B(x, t) =
2∑

σ=0

Bσ (t) exp{−i(kσ x − ωσ t)}. (2)

From the linear dispersion, we have ωσ = −βk2
σ (σ = 0, 1, 2) and ω2,3 − ω0 = �1,2

are the phase differences. The resonance condition 2k0 = k1 + k2 is assumed. It may be
mentioned that along with equation (1) we also set the Fourier transform of γ̂ B(x, t) as
γ (k)Bk(t). Substituting these in equation (1) and taking k0, k1, k2 components, we arrive at
three nonlinear complex ODEs written as
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dB0

dt
= γ0B0 + iαk0{B0|B0|2 + 2B0|B1|2 + 2B0|B2|2 + 2B1B2B0 exp(2i�t)} (3a)

dB1

dt
= γ1B1 + iαk1{2B1|B0|2 + B1|B1|2 + 2B1|B2|2 + B0B2 exp(−2i�t)} (3b)

dB2

dt
= γ2B2 + iαk2{2B2|B0|2 + 2B1|B1|2 + B2|B2|2 + 2B0B1 exp(−2i�t)} (3c)

where � = �1+�2
2

These are a set of nonlinear ODEs obtained from the original DNLS equation by taking
recourse to the Galerkin approximation, the truncation to three terms. In the absence of
turbulence, a reasonable physical model is obtained by three-wave truncation of the DNLS
equation.

After neglecting the other components of equation (3) because of their low amplitudes
the amplitude-phase variables

Bσ (t) = Rσ (t) exp(iθσ (t)), (4)

σ = 0, 1, 2 with Rσ and θσ being real, are introduced in equation (3). Also we introduce

ψ(t) = 2θ0 − θ1 − θ2 − 2�t. (5)

Hence, we get the four real equations:

dR0

dt
= γ0R0 + 2αk0R0R1R2 sin ψ (6a)

dR1

dt
= γ1R1 − αk1R0R2 sin ψ (6b)

dR2

dt
= γ2R2 − αk2R0R1 sin ψ (6c)

dψ

dt
= −2� + α[k1R1

2 + k2R2
2 − R0(k1 + k2)]

+ 4αk0R1R2 − R0
2[(R2)/(R1) + (R1)/(R2)k2] cos ψ. (6d)

Here the four-dimensional system has two symmetries under (R0, R1, R2, ψ) → (−R0, R1,

R2, ψ) and (R0, R1, R2, ψ) → (R0,−R1,−R2, ψ). This four-dimensional system can be
reduced to three equations if we assume that γ1 ≈ γ2 and kσ = 0, 1, 2 are of the same order
of magnitude. Using these relations, equations (6b) and (6c) are multiplied with R1 and R2

respectively. Then subtracting one from the other, it is found that the time asymptotic state of
R1 − R2 is zero. So we can set R1 = R2 without the loss of generality. In addition if we use
γ1 ≈ γ2, k0 ≈ k1 ≈ k2 and utilize α = β = −1 and use the following new variables:

T = γ0t, a2
0 = k0

γ0
R2

0, a2
1 = k0

γ0
R2

1, θ = −ψ, δ = − �

γ0
, γ = −γ1

γ0
,

(7)

we get the final form

ȧ0 = a0 + 2a0a
2
1 sin ψ (8a)

ȧ1 = −γ a1 − a2
0a1 sin ψ (8b)

ψ̇ = −2δ + 2
(
a2

1 − a2
0

)
+ 2

(
2a2

1 − a2
0

)
cos ψ. (8c)
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Figure 1. For parameter values δ = −6.02 and γ = 6.74, attractor A1 with the initial condition
(5.556, 0.929, 3.765), attractor A2 with the initial condition (−5.556, 0.929, 3.765), attractor A3
with the initial condition (−5.556,−0.929, 3.765) and attractor A4 with the initial condition
(5.556,−0.929, 3.765).

(This figure is in colour only in the electronic version)

This is the final form which we analyze from the point of view of local and global
stability. Here equations (8) are invariant under a symmetry group of four operations
(a0, a1, ψ) → (±a0,±a1, ψ), i.e. equation (8) has twofold reflection symmetry. As an
effect of twofold reflection symmetry we get four distinct basins of attraction and four
disjoined attractors as shown in figure 1 (attractors A1, A2, A3, A4) [19]. Moreover, there
would be no possibility of attractor margin crisis and stretching–folding (or scrolling) will
play the main role in creation of the attractors instead of tearing and squeezing mechanisms
(which play the main role in Lorenz-like attractors). As these four attractors are basically
the same, we will discuss the attractor A1 and extend the results to other attractors through
symmetry.

3. Bifurcation of attractor A1

It may be mentioned that the topological approach is based on organizing the unstable
periodic orbits whose linking properties severely constrain the structure of the strange
attractor (figure 1 which shows the four coexisting attractors at the same parameter value).

4



J. Phys. A: Math. Theor. 42 (2009) 385102 A Ray et al

(a)

(b)

Figure 2. (a) The bifurcation diagram of A1 for δ ∈ [−6.09,−5.88] and γ = 6.74. (b) The
bifurcation diagram of A2 for δ ∈ [−6.09,−5.88] and γ = 6.74.

A quantitative topological characterization of low-dimensional chaotic sets requires a good
symbolic encoding of the trajectories which is given by first return map. We have built the FRM
(first return map) at a1 = 1.0 and 3 � a0 � 6. A mask of the attractor which may be viewed
as the knot holder of the reduced plasma system is built after many visual investigations in the
tri-dimensional state space. This mask is related to the stretched and folded band on which
asymptotic trajectories evolve in the state space. Such an approach can be used whenever the
vector field is strongly dissipative and if the Lyapunov dimension is less than 3. This method
was first introduced by Birman and Williams on the Lorenz system [5]. Once the knot holder
is extracted the topology is synthesized onto a template, which is described by the linking
matrix Mij, in which i and j run from 0 to maximum symbolic name n (for example 0 to 1 in
our case).

In the last few decades several research workers have studied the characteristics of a
unimodal map under the variation of the control parameter. Such a map is the actual output
of the FRM. The associated symbolic dynamics of the resultant unimodal map is useful to
describe the creation of periodic orbits. The method applied here are thoroughly described in
[9, 20].

The initial step is an organization of the periodic orbits. Firstly one has to discard orbits
which are multiples of small periodic orbits (that is, multiple encoding of the same orbit) so that
one is then left with only pure or prime orbits, which can be labeled according to their order.
Order is actually the integral number of periods of the simplest limit cycles or the number of
distinct maxima in a0. Our main aim is to obtain a global representation of various regimes
that are encountered as the parameters (γ, δ) are varied. This can be done with the help of
bifurcation diagrams which are tools commonly used in nonlinear dynamics. Such diagrams
display the characteristic property of the asymptotic solution of the dynamical system as a
function of the control parameter. In the case of the above system given by equation (8),
derived from the plasma equation, we plot the bifurcation diagram of two coexisting attractors
(A1 and A2) with respect to the variation of parameter δ for fixed values of γ (figure 2). One
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(a)

(b)

Figure 3. For δ = −6.004 and γ = 6.74, (a) period 3 of A1, (b) period 3 of A2.

point is distinct from the bifurcation diagram that two attractors have clearly different basins
of attraction. But the symmetrical nature is still evident from it. In bifurcation of A1, values
of a0 are bounded between 4.0 and 7.0 (figure 2(a)). But in the case of A2, values of a0

are bounded between −7.0 and −4.0 (figure 2(b)). Here we have shown that the statement
made in section 2 about the symmetry of the attractor is true. As all four of them are basically
the same attractors, we have not shown the bifurcation diagram of the other two attractors.
Here δ is varied in the range δ = −6.09 to δ = −5.88 (as shown in figure 2). It is evident
from the diagram that distinguishes different periodic windows (i.e. the point from where new
periodic orbits arise in the attractor) is a very difficult task. It is easy for low periodic orbits
like periods 1, 2, 4, 3, 5, etc. But for higher periods these become impossible. This is where
the symbolic orbit can be used. As discussed in [9, 20], each monotonic branch of the first
return map (FRM) is labeled by a symbol. For the present we limit our bifurcation diagram in
the range δ = −6.09 to δ = −5.88, where the bounded solution appears.

In attractor A1, after δ = −5.8970 period 1 orbit generates period 2 through period
doubling. Then at δ = −5.9464 through another period doubling we get period 4 in A1. Then
after δ = −5.9572 we get period 8. These are the initial stages of period doubling cascade.

However, the structure of bifurcation is very complex. For example, the period 3 window
of A1 at δ = −5.9887 and the period 5 window at δ = −5.9770 are very prominent (an
example of period 3 for both attractors is given in figure 3). But there are a very large number
of finely interlaced windows between periodic and chaotic regimes. To analyze the bifurcation
in detail we consider the symbolic dynamics. In order to introduce and take advantage of the
parity of a branch in FRM, we use arithmetic symbols. The orientation-preserving branch is
labeled by an even number and the orientation-reversing branch is denoted by an odd number.
As an example we take the period 3 orbit in A1; its respective interactions with the FRM are
a01 = 5.599 494 93, a02 = 4.821 794 51 and a03 = 5.221 765 52. Now in our case we take the

6
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(a) (b)

(c)

Figure 4. FRM of attractor A1 at γ = 6.74 and (a) δ = −6.015, (b) δ = −6.1 and (c) δ = −6.2.

branch on the left of a0C
= 5.1273 as 0 and branch on the right as 1 (figure 4(a)). Thus, a

symbol can be assigned to the orbit as 101. Here the ordering rule employed is the same as
that of [9, 20].

Now that we have defined one-dimensional symbolic dynamics we can further go into the
study of the bifurcation diagrams and later to its template characterization.

We confined our study to the region δ ∈ [−6.02,−5.88] when γ = 6.74. In this region of
δ and γ the strange attractor evolves from a fixed point to limit cycle then to strange attractor.
The variation of the corresponding FRM of attractor A1 is shown in figure 4. Here the
thinness of the FRM denotes that the corresponding flow is very dissipative. So the ordering
of orbit creation in the Logistic map gives essentially all the bifurcation sequences when the
symbolic dynamics is binary (i.e. two symbols ‘0’ and ‘1’ are needed to encode the UPOs).
As most periodic orbits of the dissipative system appear as predicted by a universal sequence
[9, 22], we will test this in the present system. As the FRM and its variation with parameter are
very similar to the Rössler system, we expect its bifurcation sequence to be very similar with
that of the Rössler attractor [9]. Hence, creation of UPO in this reduced plasma system occurs
according to the ordering of symbolic dynamics up to the lower order periods. They appear
in the bifurcation diagram according to the ascending order within the symbolic sequence of
the same length for low periodic orbits. As an example the period 7 orbits that have appeared

7
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Table 1. Number of UPO of the lowest periods of attractor A1 at δ = −6.015 and γ = 6.74. The
coordinates of the outermost point of a periodic orbit are given. The fifth column shows the torsion
of the periodic orbits, sixth column shows the relative order of appearance and seventh column
represented symbolic encoding of the corresponding periodic orbits.

Period a0 a1 ψ Torsion Order Symbol

1 5.357 840 06 0.905 667 72 3.791 630 98 1 1 1
2 5.525 817 87 0.928 838 61 3.769 224 88 1 2 10
3 4.821 840 76 0.867 784 38 3.871 840 00 2 16 101
3 4.744 380 00 0.853 055 30 3.885 792 97 1 17 100
4 5.556 121 83 0.929 127 51 3.765 589 00 3 3 1011
5 5.332 118 99 0.904 710 11 3.795 018 91 4 11 10111
5 5.281 826 02 0.904 598 77 3.801 629 07 3 12 10110
6 5.004 662 04 0.863 787 17 3.843 563 08 4 5 101110
6 5.408 620 83 0.916 463 08 3.784 445 05 5 6 101111
6 5.044 446 95 0.886 947 57 3.836 009 98 3 18 100101
7 5.568 863 87 0.930 316 21 3.764 009 00 6 9 1011111
7 5.013 860 23 0.882 452 43 3.840 859 89 5 10 1011110
7 5.506 766 80 0.918 575 23 3.772 198 92 4 24 1011010
7 4.838 449 00 0.865 651 73 3.869 306 09 5 25 1011011
7 5.152 061 94 0.896 303 42 3.819 899 08 4 27 1001011
7 5.540 403 84 0.919 946 07 3.768 064 98 3 28 1001010
8 4.912 072 18 0.869 209 71 3.857 348 92 5 4 10111010
8 5.340 314 87 0.903 004 23 3.794 070 01 6 7 10111110
8 5.418 395 04 0.917 885 78 3.783 123 97 6 14 10110111
8 5.584 825 99 0.924 039 60 3.762 542 96 5 15 10110110
8 4.860 588 07 0.870 146 99 3.865 412 95 4 21 10010110
8 5.577 506 07 0.928 263 43 3.763 130 90 5 22 10010111
9 4.889 159 20 0.872 473 18 3.860 704 90 7 8 101111110
9 4.975 214 00 0.880 880 77 3.846 782 92 6 13 101111010
9 5.505 255 22 0.916 741 91 3.772 504 09 6 19 101101110
9 5.226 480 96 0.896 018 03 3.809 648 04 7 20 101101111
9 4.805 315 02 0.863 377 57 3.874 870 06 4 23 100101100
9 5.474 557 88 0.901 191 77 3.777 251 01 5 26 100101110

in the bifurcation diagram are in the order (1011111 and 1011110). Now if we arrange
them according to the ordering rule of symbolic dynamics, then they will appear in the order
(1011111 and 1011110). Both orders are the same.

The order of appearance for the period 8 orbit is stated below. The first period 8 orbit
that appears in the bifurcation diagram is 10111010 through period doubling; then we get
10111110 and 10111111 through saddle-node bifurcation at δ = 5.9674. Later, 10111111
orbit gets pruned. Hence, it never appears at δ = −5.995. The next candidates to occur
are 10110111 and 10110110 through saddle-node bifurcation. So all the period 8 orbits of
different symbolic flavors occur in the bifurcation diagram according to the ascending order
of symbolic sequence. This sequence is also in symbolic order. In table 1, we have enlisted
the parameter values of δ for a fixed value of γ = 6.74, after which particularly they appear.
We have tested the ordering rule up to period 11 and found it to be true. This can be checked
from 28 orbits up to period 9 given in tables 1 and 2.

8
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Table 2. Occurrence of the periodic orbits of A1 with the change of parameter δ ∈ [−6.015,−5.09]
and γ = 6.74. Here we have used the convention Pj where P means period and j means the relative
occurrence (this is a partial occurrence, i.e. after period 41 the period 42 occurs).

Period Symbolic representation Parameter (δ) value

21 10 −5.8970
41 1011 −5.9464
81 10111010 −5.9572
61 101110 −5.9657
61 101111 −5.9657
82 110111110 −5.9674
82 10111111 −5.9674
91 101111110 −5.9695
91 101111111 −5.9695
71 1011111 −5.9728
71 1011110 −5.9728
51 10111 −5.9770
51 10110 −5.9770
92 101111010 −5.9812
92 101111011 −5.9812
83 10110111 −5.9843
83 10110110 −5.9843
31 101 −5.9887
31 100 −5.9887
62 100101 −5.9918
93 101101110 −5.9942
93 101101111 −5.9942
84 10010110 −5.9961
84 10010111 −5.9961
94 100101100 −5.9973
72 1011010 −5.9988
72 1011011 −5.9988
95 100101110 −6.0011
73 1001011 −6.0032
73 1001010 −6.0032

The forcing rule is a powerful tool to find the occurrence of the periodic orbits in the
bifurcation diagram which we have stated in table 1. The details of the rule are described in
[3, 9]. It is more useful than the ordering rule. These are the relative and partial orders for the
three-dimensional flow.

For each UPO, table 1 gives the coordinate of the outermost periodic points in the FRM.
Three high-precession coordinates are given in this table. It may further be added that we
observe the lack of the period 1 orbit of label (0). This UPO coincides with the inner fixed
point. It is the first one to be created but does not lie within the attractor. The ‘00’ symbol
was absent in the symbolic sequence before the appearance of period 3 at δ = −5.9887 [22].
So we can say that the attractor undergoes a change which changes its size. This is called
the internal crisis. For details one could consult [23]. We did not calculate the 1D entropy

9
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which is not relevant to these 3D flows with 2D Poincaré sections. For many orbits, 1D and
2D entropy are not the same [24].

Growing further into the parameter region δ ∈ [−6.2 − 6.02] (and γ = 6.74) reveals
a progressive increase in the complexity of the FRM (figure 4) with the simultaneous
enrichment of UPO’s population. The FRMs reveal new critical points, and symbolic dynamics
progressively incorporate new letters (as described by the encoding condition). Here in
figure 4(c), we have shown the FRM in δ = −6.2. Here two new branches occur at the FRM.
This signifies that we need five-letter symbolic dynamics to encode the motion. That is, more
UPOs arise inside the attractor.

It is beyond the scope of the present paper to present exhaustive results of this evaluation
of the A1 attractor. Only some typical results for the A1 attractor are shown in table 3.

The creation of the new UPOs as the parameter ‘δ’ increases is a result of the growth
of the attractor on the outside of the folded band. According to this the creation of periodic
orbits is governed by the outermost periodic points of UPOs. Here it should be noted that
to the extent to which we have searched, UPO population concerning two letter words are
completed before the completion of that of three letter words (0, 1, 2). This rule is carried
up to four-letter symbolic orbits that we have studied for the A1 attractor. From these we
conjecture that i-letter symbolic dynamics is completed before the completion of (i + 1)-letter
symbolic dynamics for the A1 attractor. This is in compliance with the rules developed in [9].

4. Computation of topological invariants:

Once the UPOs are extracted from the attractor at a particular parameter value, one can go on
to calculate the topological invariants [13, 15] like

(i) self-linking number and local torsion of each periodic orbit and
(ii) the linking number of the pairs of orbit.

The linking number of the two periodic orbits A and B represents how many times A

winds around B. Obviously, lk(A,B) = lk(B,A). If XA(t) and XB(t) denote the trajectories
in phase space and PAT and PBT are their periods, then the linking number of A and B is the
Gauss integral:

lk(A,B) = 1

4π

∫ PAT

o

∫ PBT

0

(XB − XA) · (dXA ∧ dXB)

‖XB − XA‖3
. (9)

But it is difficult to calculate the above Gaussian integral. To our relief, this linking
number can be written as

lk(A,B) = 1

2

∑
i

σi, (10)

where σi represents the ith signed crossing between A and B. Thus, one can calculate the
linking number between two orbits A and B by counting the number of signed crossings. Here
σi is +1 or −1 depending on whether it is over cross or under cross. This is graphically shown
in figure 5. While calculating the self-linking number for a periodic orbit A, which represents
the linking of a periodic orbit with itself, we have to modify relation (10) as

Slk(A) =
∑

i

σi . (11)

But this self-linking number is not a topological constant in R3 space. This is constant in
R2 × S space.

10
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Table 3. The intersection of the UPO of the lowest periodic orbits of attractor A1 at δ = −6.1 and
γ = 6.74 with the FRM and the corresponding symbolic sequence are shown.

Period Symbol a0-coordinate a1-coordinate ψ-coordinate

1 1 5.454 482 0.924 8986 3.783 154
2 10 5.644 196 0.919 1234 3.760 762
3 100 4.641 326 0.848 6545 3.909 968
4 1011 5.664 752 0.903 7088 3.759 351
4 1001 4.581 622 0.843 1033 3.921 254
4 1000 4.650 711 0.844 4239 3.908 612
4 2000 6.670 358 1.009 217 3.656 593
4 2001 4.547978 0.840 9672 3.927 683
5 10001 4.443 043 0.833 8637 3.948 476
5 10010 4.902 309 0.869 3106 3.864 486
5 10011 5.778 376 0.939 8175 3.744 351
5 10111 4.846 958 0.864 8170 3.873 684
5 10110 4.831 361 0.864 4527 3.876 252
5 10000 4.386 683 0.828 3781 3.960 253
5 20000 4.407 683 0.821 7251 3.956 534
5 20001 4.552 217 0.840 1238 3.926 954
6 101111 5.472 320 0.911 0307 3.781 852
6 100101 4.915 598 0.867 3168 3.862 532
6 100111 5.446 669 0.900 8806 3.785 705
6 100011 4.458 118 0.834 6265 3.945 438
6 100001 4.575 913 0.842 9812 3.922 318
6 100000 4.315 804 0.820 8312 3.975 614
6 200000 6.484 839 0.988 4309 3.673 109
6 200001 4.554 817 0.843 4123 3.926 211
6 200110 5.423 745 0.912 4944 3.787 833
6 200101 4.744 567 0.854 5670 3.891 476
7 1001111 5.780 340 0.938 0071 3.744 248
7 1000100 4.481 336 0.836 3423 3.940 770
7 1000101 5.352 275 0.909 9650 3.797 155
7 1000111 4.595 721 0.847 8810 3.918 288
7 1000011 4.860 255 0.869 1685 3.871 213
7 1000001 4.440 215 0.833 8025 3.949 044
7 1000000 4.390 615 0.829 4357 3.959 364
7 2000000 4.404 212 0.828 2123 3.956 701
7 2000001 5.239 857 0.901 7264 3.812 658
7 2000100 4.716 829 0.860 4318 3.895 791
7 2001110 5.423 796 0.896 5642 3.788 862
8 10001111 5.445 158 0.913 2339 3.785 089
8 10001100 5.753 363 0.944 0594 3.746 840
8 10000100 4.379 840 0.828 8973 3.961 607
8 10000101 4.916 883 0.866 4995 3.862 389
8 10000110 4.974 823 0.872 3711 3.852 982
8 10000011 5.964 556 0.954 8642 3.723 696
8 10000001 4.241 657 0.815 0489 3.992 134
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Table 3. (Continued.)

Period Symbol a0-coordinate a1-coordinate ψ-coordinate

8 10000000 4.222 870 0.815 4141 3.996 271
8 20000000 5.061 439 0.883 2855 3.839 200
8 20000001 6.385 991 0.982 1149 3.682 044
8 20000010 5.579 458 0.926 0530 3.767 908
8 20001101 4.825 859 0.864 0332 3.877 196
8 20001001 4.760 636 0.858 8461 3.888 428

(a)

(b)

Figure 5. Example of the calculation of the self-linking number of period 3 (100) and linking
number between the previous orbit and period 1 (1) orbit. Black dots show positive crossing and
blank dots show negative crossing.

We have calculated the linking number and self-linking number of 28 orbits extracted
from the dynamical system at (γ = 6.54 and δ = −6.015) and they are shown in table 4.
The diagonal of the table gives the self-linking number of the corresponding orbits, and off-
diagonal elements give the linking number between respective orbits. An example of the
calculation is shown in figure 5. In figure 5(a), we have three black dots and one blank dot.
These dots represent the crossing points of period 3 (100). The black dots are the positive
crossings and the blank dots are the negative crossing. Thus, the total positive crossing number
is 2. Thus, the self-linking number of the corresponding periodic orbit is 2 (from relation
(11)). In figure 5(b), we have shown the linking between above the period 3 orbit and the
period 1 orbit (1). The total positive crossing number between one (1) and three (100) orbit

12
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Table 4. The linking number and self-linking number of UPO of the lowest period (of A1 at
δ = −6.015 and γ = 6.74) are given. UPOs are ordered in the same order as that of table 1. Here
we have used the same convention Pj as described in table 2.

Period 11 21 31 31 41 51 51 61 61 62 71 71 72 72 73 73

11 0 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3
21 1 1 2 2 3 4 4 4 5 5 6 6 5 5 5 5
31 1 2 2 3 4 5 5 6 6 6 7 7 7 7 7 7
31 1 2 3 2 4 5 5 5 6 6 7 7 7 7 6 6
41 2 3 4 4 5 8 8 8 10 10 12 12 11 11 10 10
51 2 4 5 5 8 8 10 10 12 12 14 14 14 14 13 13
51 2 4 5 5 8 10 8 10 12 12 14 14 13 13 12 12
61 2 4 6 5 8 10 10 9 12 12 14 14 14 14 13 13
61 3 5 6 6 10 12 12 12 13 15 18 18 16 16 15 15
62 3 5 6 6 10 12 12 12 15 13 18 18 17 17 16 16
71 3 6 7 7 12 14 14 14 18 18 18 21 20 20 19 19
71 3 6 7 7 12 14 14 14 18 18 21 18 19 19 18 18
72 3 5 7 7 11 14 13 14 16 17 20 19 16 18 17 17
72 3 5 7 7 11 14 13 14 16 17 20 19 18 16 17 17
73 3 5 7 6 10 13 12 13 15 16 19 18 17 17 14 16
73 3 5 7 6 10 13 12 13 15 16 19 18 17 17 16 14

is 2. Hence, the linking number is 1 (from equation (10)). At last, we come to the part of
calculating the local torsion. Local torsion measures which way the trajectories infinitely close
to a periodic orbit wind around. As one follows the UPO over one period PAT , the directions
of the local stable

(
Ws

l (A)
)

and unstable
(
Wu

l (A)
)

manifold rotate by an integer number of
half turns. This number is defined to be local torsion.

In numerical simulation local torsion (
l) can be computed by using linearization of the
equation of motion around the periodic orbit. Given a set of ODEs

dX

dt
= f (X, t). (12)

The linearized equation govern the time evaluation of the infinitesimal perturbation δX of
trajectory X:

d(δX(t))

dt
= J (X, t)δX(t), (13)

where the Jacobian matrix is given by

Jij (X, t) = ∂fi(X, t)

∂Xj

. (14)

Given a periodic orbit XA(t) of periodic PAT , and its Floquet matrix MA(t), one can always
have a linear relation between X(t + PAT ) and X(t),

δX(t + PAT ) = MA(t) × δX(t) (15)

can be computed by integrating equation (13) over one period of the orbit for a basis of the
initial condition.

The eigenvector ξs(t)(ξu(t)) with the eigenvalue smaller (greater) than 1 indicates the
direction of the local stable (unstable) manifold. Integrating equation (13) with the initial

13
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condition (δX(0) = ξu(0)), the local torsion is then given by the formula similar to
equation (9):


l(A) = 1

π

∫ PAT

0
n ·

(
δX ∧ δẊ

‖δX‖2

)
dt.

In our case, the local torsion of the extracted orbits is given in fifth column of table 1.

5. The template characterization

Birman and Williams have proved a remarkable theorem, which greatly facilitates the diagnosis
of the dynamics of the system, which exhibits chaos and has a hyperbolic invariant set. It states
that one can project all periodic orbits onto an unstable invariant manifold in the direction
of stable foliation without incurring crossing. In simple terms, topological organization of
periodic orbits is not changed by projection.

The attractor is the result of the stretching and folding of branches contained in the
attractor. To find the topological signature we need to find the linking numbers and self-
linking numbers of the UPOs among each other. The linking numbers are found by equation
(10). The whole topological information about the attractor is embedded in its template. This
template can be drawn from the linking number and torsion of the orbit. The template remains
invariant under a small change of the parameter. But the basis set of UPOs changes.

We describe in brief the basic features of the template representation as described in
[3, 7] as follows.

(i) The FRM gives the position of the attractor into N ribbon subsets and each one is labeled
by the corresponding letter of the symbolic dynamics.

(ii) Each ribbon subset is carefully drawn to identify all half twist and crossings.
(iii) The template is obtained by connecting the ribbons together according to the standard

insertion rules.
(iv) The N × N matrix is obtained from the knowledge of twist and crossing. Here N is the

total number of distinct symbols.
(v) Each branch of an expansive template contains a period 1 orbit. The diagonal elements

T(i, i) of the template matrix are the local torsion of the period 1 orbit, and the off-diagonal
elements T (i, j) = T (j, i) (i �= j) are twice the winding number of the period 1 orbits i
and j .

(vi) Finally the linking number of any two UPOs can be deduced from their symbolic dynamics.

Now in our case for the given symbolic name and its (self) linking number from tables 2
and 4, elements of the template matrix for the attractor A1 at γ = 6.74 and δ = −6.015 are
given by

slk(01) = t01 + l01 = 1

lk(1, 01) = 1

2
t01 +

1

2
t11 +

π(t11)

2
l01 = 1

lk(1, 0111) = 1

2
t01 +

3

2
t11 +

π(t11)

2
l01 = 2

lk(01, 0111) = 2t01 +
1

2
t00 +

3

2
t11 +

1

2
[π(t00 + t11)] × l01 = 3

Slk(0111) = 3t01 + 3t11 + (3 − π(t11)) × l01 = 5,

14
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Figure 6. The two-dimensional figure of the template of A1 represented by the template matrix
and the array matrix. Two-branch template of A1 at δ = −6.015 and γ = 6.74. Here the arrow
denotes the direction of the flow.

where π(n) = 0 or 1 if n is even or odd. From these equations we have the solution

t01 = 0, t00 = 0, t11 = 1 and l00 = 0 l01 = 1.

Hence, the template can be written as(
0 0
0 1

)

(0 1).

Two-dimensional projection representing the above matrix is shown in figure 6. This
figure shows the distinct two-branch template (one is ‘0’ and another is ‘1’). As a test one can
find the linking number from the template, and find that they match those in table 4.

As we progress further into the parameter region a new template arises, i.e. new branches
occur. At δ = −6.1 and γ = 6.74, a new branch with even parity occurs in the FRM of
attractor A1, as was described extensively in the previous section (figure 4(b)). Similarly
a new branch with local torsion 2 occurs (i.e. it is twisted two times before coming back to
FRM). Former two branches ‘0’ and ‘1’ keep their topology intact. Hence, the template matrix
becomes a 3 × 3 matrix. The template matrix can be written as⎛

⎝0 0 0
0 1 2
0 2 2

⎞
⎠

(0 2 1).

As we travel further into the parameter region more and more branches with even and
odd parity occur in the FRM. Thus, new branches will be incorporated into the template of the
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A1 attractor. From the very beginning, we have said that A1, A2, A3 and A4 are not different.
They are just the image of one another. From this we can conjecture that a template containing
all other attractors would be either the same template, that explains the flow of A1, or the
mirror image of the template defined above.

6. Conclusion and discussion

In our above analysis we have studied in detail the mechanisms which are responsible for the
formation of the chaotic attractor for a new chaotic dynamical system. The important aspect
of the system, which is worth pointing out, is that there are four disjoined coexisting attractors
arising out of the two two-fold symmetry of the governing equation. As proposed in [19],
these four attractors have distinct basins of attraction and disjoined attractors which is proved
with the help of figures 1 and 2. As these attractors are basically the same, we calculated the
template structure of the attractor A1 at different parameter values. All the UPOs and symbolic
dynamics corresponding to each different case can be explicitly constructed. We have also
seen that the periodic orbit appear as predicted by universal sequence. This study might help
us to understand the behavior of these coexisting attractors.
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